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Abstract

The primary instability in homogeneous elastic!plastic bodies with prescribed boundary displacements is
studied[ In this event instability is known to arise when Hadamard|s inequality is _rst violated\ this violation
being the very condition for the localized instability to be possible in principle[ The question is posed whether
localized instability is the only possible type of instability under speci_ed conditions\ or di}use instability is
equally possible "which is true for elastic bodies#[

In order to state a rational criterion for distinction between localized and di}use instability modes "IMs#
"which are treated in full generality as mutually complementary notions without any a priori prescriptions
regarding the mode of deformation#\ it is proposed to characterize IMs by means of some quantitative
measure of localization named the {localizational volume|[ The latter evaluates the volume of that part of a
body\ where relatively great incremental strains are concentrated "this property of proposed measure is
proved#[

The main result established is that in the problem under consideration any primary IM is characterized
by in_nitesimal value of localizational volume\ i[e[ all the primary IMs appear to be localized in such a
{volumetric| sense\ which means at least the absence of di}use IMs[

The conclusion is drawn that indispensability of such a localization "treated in the sense of small local!
izational volume# is a global\ essentially non!linear e}ect "boundary constraint¦piecewise−linear consti!
tutive relation#[ Þ 0888 Published by Elsevier Science Ltd[ All rights reserved[

0[ Introduction

It is well!known from observations in the _elds of geology\ technology and material testing\ that
the zones of strain localization are formed at a certain stage of deformation process\ such a
behaviour being typical for a variety of materials ranging from soils and rocks to metals[

Study of the localization phenomena\ apart from its evident importance for a good number of
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applied disciplines\ is also of interest from a purely theoretical standpoint\ since localization is
conventionallyconsideredasamechanismofincipiencyofdiscontinuities ininitiallycontinuousmedium[

Such a concept of localizational incipiency of discontinuities was stated in clear and complete
form by Rudnicki and Rice "0864# and Rice "0866# on the grounds of fundamental results of Hill
"0851#\ based on the classical Hadamard|s investigations on elastic stability[ The concept has got
an extremely wide acknowledgement and spread and led to a great number of researchers attacking
the problem of localization analytically as well as numerically\ using the ideas and methods of
foregoers\ often in roughly simpli_ed form[

As for the grounds\ the classical paper of Hill "0851# contains a draft of proof of the basic
Hadamard stability theorem for the case of elastic!plastic solids "the original theorem concerns
purely elastic ones#[ From the theorem together with the proof it follows _rstly\ that instability in
elastic!plastic body arises no later than Hadamard|s inequality is violated " for the moduli tensor
of plastic response#\ and secondly\ that peculiar localized IMs "the {Lu�ders band| distortions\
according to Hill|s terminology# are possible as the modes of manifestation of that type of
constitutive degeneracy[

In Rudnicki and Rice "0864# and Rice "0866# this result is employed and speci_ed for an elastic!
plastic constitutive relation\ that describes the behaviour of soils and rocks\ and the above!
mentioned concept is stated[

From what is proven in all mentioned basic works on localization\ it by no means follows that
the localized instability is the only possible or in any sense preferable type of instability under
some kind of conditions[ Nevertheless\ in the majority of papers which follow Rudnicki and Rice
"0864# and Rice "0866# and where their method of analysis is used\ such an idea is regarded as
self!evident and requiring no substantiation[ Such a conviction results probably from the fact that
the actual experimental data con_rm preference of the localized instability\ and thus\ it seems to
be already explained theoretically "within the framework of the model employed#[ However\ in
general it cannot be proved\ since under the conditions when active plastic loading is possible all
over the body and hence\ the response of elastic!plastic body is the same as that of some hypothetical
"so!called {comparison|# elastic body\ di}use IMs are possible along with localized ones "see the
example in Section 2#[

Taking all of this into account\ it seems desirable "in order to render the concept of localizational
incipiency of discontinuities\ more complete and convincing# really to prove theoretically the
indispensability of just localized primary instability\ at least for some restricted cases[

It should be pointed out that somewhat di}erent manners of the onset of localization are
observed in the experiments of di}erent types^ the variety of known facts is discussed in detail by
Rice "0866#[ From all discussed there\ it is possible to single out two basic variants[ The _rst one
is characterized by di}use primary instability\ whereas the localized mode is formed during further
post!critical deformation[ Theoretical analysis of such a type of evolution of deformation process
for biaxially stretched sheets was proposed by Petryk and Thermann "0885#[ The second one is
characterized by the fact that the localized pattern emerges from a preceding uniform state instantly
and at once as a whole[ It seems natural to treat it as a localized primary IM[

An attempt to explain theoretically the second of the observed types of the onset of localization\
i[e[\ to prove that under certain conditions only localized primary IMs are possible\ is exactly the
purpose of the paper\ that continues previous investigations of the author "Ryzhak\ 0882# in the
same direction[
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In the context of this study\ it appeared natural to give up the very tight notion of localization
as concentration of relatively great strains within extremely thin plane layers "the Lu�ders band
IMs#[ Thus\ the shape of a region of strain concentration and strain distribution within it are not
speci_ed a priori\ whereas localized and di}use types of deformation are understood in full
generality as mutually complementary types\ embracing in couple the whole range of possible
deformation modes[

With such a broad treatment of localization\ the only way to distinguish between localized and
di}use IMs\ is to state some rational criterion based upon a quantitative measure of localization\
that would characterize each IM[ It is proposed to use for this purpose a quantity of {localizational
volume| "arising in the course of instability analysis# which appears to evaluate the volume of a
part of a body\ where relatively great incremental strains corresponding to an IM\ are concentrated
"this property is proved#[ The IM is said to be localized if its localizational volume is small as
compared with the whole volume of a body[

The main result established is that in homogeneous elastic!plastic bodies under the displacement
boundary conditions\ all the primary IMs are characterized by in_nitesimal values of the local!
izational volume[ This does not mean that they are of shear "Lu�ders# band type\ but that they are
at least not di}use\ which adds some needed signi_cant element to the concept of localizational
mechanism of incipiency of discontinuities in solids[

From the argument it is clear that such a {volumetric| localization is in principle a non!linear
global e}ect caused by incremental piecewise linearity of elastic!plastic constitutive relation "two
sets of the moduli# and by the in~uence of a boundary constraint\ which makes both sets manifest
themselves[

Note that violation of Hadamard|s inequality is necessary for the localized type of instability to
occur[ Hence\ if instability arises before violation of Hadamard|s inequality\ then it is surely di}use\
e[g[ when the traction boundary conditions are posed on a part of the boundary "Hutchinson and
Miles\ 0863^ Miles\ 0864#[ Thus\ for the localized IMs to be possible in principle\ stability must be
preserved up to violation of Hadamard|s inequality[ The most typical conditions for it "Hill\ 0851#
are the homogeneity of a body together with rigid boundary constraint "the case just considered
here#[ However\ stability can be preserved up to the same critical stage under di}erent conditions*
some of the cases are considered by Nikitin and Ryzhak "0875# and Ryzhak "0882a\ b\ 0883#\ the
main result of the paper still remaining valid "see some of the examples in Section 4#[

Gibbs| system of tensor notation\ supplemented with the tensor product sign\ is used throughout^
summation convention is never employed[

1[ Constitutive relations

A material is supposed to be elastic!plastic\ obeying the following incremental piecewise!linear
associative constitutive relation "Hill\ 0847\ 0848#]

dT5 � 6
Cp ]dH\ dH]S − 9

Ce ]dH\ dH]S ¾ 9
\

Cp � Ce−uS & S\ u × 9\ "0#
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where dH 0 9 & du"x# is the in_nitesimal distortion tensor that corresponds to the _eld of in_ni!
tesimal displacements du"x# with respect to current con_guration 5 "taken as a reference con!
_guration#\ dT5"x# is a corresponding increment of the Piola stress tensor at a certain material
point\ Ce and Cp are the moduli tensors for elastic and plastic responses\ and S is a symmetric
second!order tensor that speci_es the normal to the smooth yield surface in distortion space[
Positiveness of u means that a material is supposed to be sti}er under elastic unloading than under
active plastic loading "the latter is a conventional supposition#[

2[ Stability and instability criteria*the primary IMs

We shall examine stability and instability of uniform equilibrium states of homogeneous elastic!
plastic bodies\ under the displacement boundary conditions[ Consider some family 5"q# of the
equilibrium con_gurations of that type versus a parameter q and suppose that there is some
threshold value q�\ i[e[ for q ³ q� the states are stable and for q × q� they are unstable[

It is implied that the body undergoes some quasi!static uniform deformation speci_ed by the
prescribed in_nitely slow motion of material points of the boundary\ and in the course of this
process the parameter q increases monotonically[ Thus\ instability arises _rst at q � q�¦9 and the
primary instability is just the matter studied here "without any customary preliminary suppositions
regarding its modes#[

Whatever de_nition of stability or instability we make use of "Hill\ 0847\ 0848\ 0867^ Drucker\
0848\ 0853#\ we arrive at the same mathematical criterion of presence " for stability# or absence
" for instability# of positive de_niteness of the functional

R"du# 0 g5

dH]C]dH dV−g15

dt5 = du dS "1#

versus the admissible in_nitesimal virtual displacement _elds du"x# with respect to equilibrium
con_guration 5"q# taken as a reference one[ Here t5 is the Piola boundary traction and the tensor
C is meant according to eqn "0# to take the values of Cp or Ce dependent on the sign of the product
dH ] S^ the tensor _elds Cp"x#\ Ce"x# and S"x# are constant in x "homogeneity of a body and
uniformity of quasi!static process of its deformation#[ The _elds du"x# are supposed to be continu!
ous\ piecewise!smooth and vanishing over the boundary "displacement boundary conditions#[
Then the surface integral in eqn "1# vanishes]

R"du# � g5

dH]C]dH dV[ "2#

We exclude indi}erent equilibrium "when R"du# is positive semi!de_nite# from instability\ i[e[
consider as unstable only the states for which R"du# takes the negative values\ and any admissible
displacement _eld giving a negative value to the functional we call the IM[ It should be mentioned\
however\ that the states of indi}erent equilibrium in the case considered are absent "proved below#[

We introduce the Hadamard number c of the fourth!order tensor C as follows]

c 0 min
=f=�=g=�0

f & g]C] f & g\ "3#
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cp ¾ ce [ "4#

Then Hadamard|s condition and that of strong ellipticity are equivalent to non!negativeness
and strict positiveness of the Hadamard number\ respectively[

If cp ³ 9\ then it follows from the basic Hadamard stability theorem\ extended onto the case of
elastic!plastic bodies "Hill\ 0851^ Ryzhak\ 0876^ Petryk\ 0881#\ that the body is unstable\ and IMs
constructed in the proofs are clearly localized "of shear band type#[

On the other hand\ using the inequality

[dH\ dH]Cp ]dH ¾ dH]Ce ]dH "5#

we get the following minorization]

R"du# − Rp "du# 0 g5

dH]Cp ]dH dV[ "6#

If cp − 9\ then due to theorem of Van Hove "0836#\ some additional inequality holds for the
minorizing functional]

Rp "du# − cp g5

dH]dH dV − 9\ "7#

which means that instability arises here only when cp becomes negative[ Hence\ if cp"q# is supposed
to decrease in q\ then the primary IMs correspond to the value cp � −9 and hence\ the localized
IMs occur among them[

However\ for an incrementally linear homogeneous body "i[e[ possessing only one set of the
tangent moduli# the di}use IMs are equally possible under the same conditions\ and the following
example serves to illustrate this assertion[

Consider a homogeneous elastic body characterized by linear incremental constitutive relation

dT5 � C]dH\ "8#

where the moduli tensor C is constant in x[ Let the Hadamard number c be negative and correspond
to a pair of unit vectors n9\ g9]

c � n9 & g9 ]C]n9 & g9 ³ 9[ "09#

Let the rectangular parallelepiped

9 ¾ x = ei ¾ li \ i � 0\ 1\ 2\ei = ej � dij \ e0 � n9 \

lie within the body[ We set the following sequence of incremental displacement _elds vanishing
outside the parallelepiped]

dun "x# � g9 sin
np"x = e0 #

l0
sin

p"x = e1 #
l1

sin
p"x = e2 #

l2
\ n � 0\ 1[ [ [ \ "00#

R"dun# � g5

9 & dun ]C]9 & dun dV
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�
p1

7
V

l1
0 0n

1c¦
l1
0

l1
1

e1 & g9 ]C]e1 & g9¦
l1
0

l1
2

e2 & g9 ]C]e2 & g91[ "01#

From eqn "01# it is clear that R"dun# ³ 9 for su.ciently great n[ However\ the IM in eqn "00# is
di}use "although oscillatory#^ moreover\ for some particular types of materials\ non!oscillatory
di}use IMs are also possible[

Hence\ for elastic "i[e[ incrementally linear# bodies localized instability in the case considered is
not indispensable\ but for elastic!plastic "i[e[ incrementally piecewise!linear# ones the situation is
quite di}erent due to inevitable incremental unloading that corresponds to each IM[ Indeed\ for
each non!zero _eld du"x# the region 5 splits into two subsets] that of incremental loading
"dH ] S × 9#\ denoted 5p\ and the other of incremental unloading "dH ] S ¾ 9#\ denoted 5e[ Given
the boundary conditions in couple with homogeneity\ we obtain "by divergence theorem#]

g5p

dH]S dV¦g5e

dH]S dV � g15

n & du]S dS � 9[ "02#

Hence\ there are two possibilities] "i# uniformly neutral loading dH ] S 0 9\ for which 5e � 5\ the
volume V e is equal to the whole volume V and Vp � 9 "it will be clear from below that this case
gives only positive values to the functional eqn "2#^ "ii# both sets 5p and 5e are not empty and both
volumes Vp and Ve are non!zero whereas their sum is the whole volume V[

Proceeding from such a splitting\ we shall _nd the integral inequality which any primary IM
must obey[

3[ Inequality for the primary IMs

It is natural to consider all basic elements of the constitutive relation "1[0#\ namely Ce\ S and u\
as continuously dependent on the loading parameter q[ We suppose additionally that the tensor
Ce"q# remains strongly elliptic "ce"q# × 9# for all values of q and that cp"q# decreases monotonically
in q[

Let us show _rst\ that non!zero neutral loading gives only positive values to the functional eqn
"2#[ Indeed\ if dH ] S 0 9\ then everywhere in the region dH]Cp]dH � dH]Ce]dH and hence\

R"du# � g5

dH]Ce ]dH dV − ce g5

dH]dH dV × 9 "03#

"the _rst inequality follows from Van Hove|s theorem and the second\ from supposition regarding
ce#[ Thus\ IMs by no means correspond to neutral loading\ and hence\ for any IM the values of
Vp and Ve are both non!zero "Section 2#[

It was proved in Section 2\ that R"du# − 9 for cp − 9[ Let us show now\ that it is actually
positive de_nite even for zero value of cp[ There are two distinct cases] when dH ] S 0 9 "neutral
loading# and when it is not[ The case of neutral loading has been considered above[ In the other
case we have]
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R"du# � g5

dH]Cp ]dH dV¦u g5e

"dH]S#1 dV − cp g5

"dH]dH# dV¦u g5e

"dH]S#1 dV × 9[

"04#

Let us remark that with certain type of the moduli tensor\ R"du# can be positive de_nite for c � 9
even in elasticity "Hayes\ 0855#[ Summarizing the above and taking the account of the beginning
of Section 2\ we have

cp "q�# � 9\ cp "q# × 9 for q ³ q�\ cp "q# ³ 9 for q × q�\ cp "q�¦9# � −9\ "05#

and R"du# is positive de_nite for q ¾ q�\ whereas immediately after passing the value q � q� the
functional R"du# loses its positive de_niteness\ i[e[ it can take negative values "the inception of
instability\ whose earliest instant in a strict sense being absent#[

In order to _nd some basic inequality for the IMs\ we introduce for each value of q some
auxiliary family of the fourth!order tensors versus a parameter a\ that includes Ce"q# and Cp"q#]

C"q\ a# 0 Ce "q#−aS"q# & S"q#\ a − 9\ "06#

C"q\ 9# � Ce "q#\ C"q\ u"q## � Cp "q# [ "07#

Consider the corresponding Hadamard number c"q\ a# as a function of a[ The properties of this
function are studied in Appendix 0 and it is found that]

0[ The function c"q\ a# is continuous and non!increasing in a[
1[ When a is varied from zero to ¦�\ c"q\ a# is varied from ce"q# × 9 to −�[
2[ At the values of a\ for which c"q\ a# ³ ce"q#\ the function c"q\ a# is monotonically decreasing in

a[

Hence\ for any q there is a single value a�"q# × 9 such\ that]

c"q\ a�"q## � 9\ "08#

c"q\ a# ³ 9\ a × a�"q#\ "19#

c"q\ a# � −9\ a � a�"q#¦9[ "10#

It is not di.cult to show that a� − ce:"S]S#[
By eqns "05#\ "07# and "10# we have]

cp "q�¦9# � c"q�¦9\ u"q�¦9## � −9c u"q�¦9# � a�"q�¦9#¦9[ "11#

The value C"q\ a�"q## we denote C�"q#[ Omitting the argument q\ we can write]

Ce � C�¦a�S & S\ Cp � C�−"u−a�#S & S[ "12#

If q × q�\ then u−a� × 9^ for an IM du"x# the functional takes a negative value]

R"du# � g5

dH]C�]dH dV¦a� g5e

"dH]S#1 dV−"u−a�#g5p

"dH]S#1 dV ³ 9[ "13#

Due to Van Hove|s theorem the _rst integral in eqn "13# is non!negative and hence\
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F

G

j

J

G

f

g5

dH]C�]dH dV ³"u−a�#g5p

"dH]S#1 dV

a�g5e

"dH]S#1 dV ³"u−a�#g5p

"dH]S#1 dV

"14#

Using the BunyakovskiiÐSchwarz inequality for the set 5e and taking into account eqn "02#\ we
obtain from the second inequality "14#]

u−a�
a�

×
0

Ve

0g5e

dH]S dV1
1

g5p

"dH]S#1 dV
�

0

3Ve

0g5

=dH]S = dV1
1

g5p

"dH]S#1 dV

×
0

3V

0g5

=dH]S = dV1
1

g5

"dH]S#1 dV
0

0
3V

Vloc "dH]S# [ "15#

The functional

Vloc "8# 0
0g5

=8"x# = dV1
1

g5

"8"x##1 dV
¾ V "16#

is de_ned on the set of piecewise continuous functions 8"x#^ we call it the {localizational volume|
corresponding to the _eld 8"x#[ Its values are never greater than V "due to BunyakovskiiÐSchwarz
inequality for 5# and evaluate the volume of the part of 5\ where relatively great absolute values
of the quantity 8 are localized[ The quantity of this type was introduced for a one!dimensional
continuum by Ryzhak "0882#[ Detailed consideration of the properties of localizational volume is
given in Appendix 1[

For the primary IMs u−a� � ¦9[ Due to the fact\ that a� × 9 is always _nite\ we have]

u−a�
a�

� ¦9 c
Vloc "dH]S#

V
� ¦9[ "17#

The in_nitesimal values of localizational volume relative to the whole volume\ we treat as a
{volumetric| localization and eqn "17# shows that all the primary IMs are localized in such a
volumetric sense[

Note\ that the smallness of Vloc"dH ] S# does not mean that Vp is small[ It is not di.cult to show
that Vloc ¾ 3Vp\ and if Vp is in_nitesimal\ then eqn "17# is surely valid and volumetric localization
takes place\ but Vp may be _nite as well\ while Vloc being small and Ve � V−Vp being much greater
than Vloc[
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Actually\ it is not di.cult to deduce from eqns "14# and "11# a property a bit stronger than eqn
"17#\ precisely the following]

Vp
loc "dH]S#

Ve
loc "dH]S#

� ¦9\
0
3
Vloc ¾ Vp

loc ¾ Vp \ Ve
loc ¾ Ve ³V\ "18#

where it is meant that the integrals in numerator are taken over 5p and in denominator they are
taken over 5e[

4[ Some illustrative examples

This section consists of a collection of particular cases of localized instability analysis\ that serve
to illustrate and clarify di}erent aspects of above general considerations[

4[0[ One!dimensional elastic!plastic _lament with _xed ends

A merit of one!dimensional model is that due to its simplicity instability analysis can be carried
out completely[

Consider a one!dimensional _lament stretched to a homogeneous plastic state\ after which its
ends are _xed[ The incremental tension obeys the following elastic!plastic constitutive relation]

dT5 � 6
hdH\ dH × 9

GdH\ dH ¾ 9
\ "29#

G × 9\ dH 0 du?"x#\ 9 ¾ x ¾ l\ du"9# � du"l# � 9\ "20#

where du"x# is the incremental displacement _eld vanishing at the ends\ and du?"x# is the incremen!
tal longitudinal strain[

The functional that governs stability\ is a simpli_ed version of eqn "2#]

R"du# � Gg5e

"du?#1 dx¦h g5p

"du?#1 dx[ "21#

The functional R"du# is positive de_nite as long as h − 9\ and loses immediately its positive
de_niteness when h becomes negative "i[e[ at h � −9#[

Suppose that h ³ 9 and du"x# is an IM]

R"du# ³ 9 \

g5e

"du?#1 dx

g5p

"du?#1 dx
³ −

h
G

�
=h =
G

[ "22#

Dividing both the numerator and denominator by
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Fig[ 0[ One!dimensional elastic!plastic _lament[ A three!interval piecewise!linear displacement _eld[

0g5p

du? dx1
1

� 0g5e

du? dx1
1

\

we _nd ultimately for the primary instability]

lp
loc "du#

le
loc "du#

³
=h =
G

� ¦9[ "23#

Inequality "23# expresses entirely the fact that the IM du"x# is a primary one "i[e[ corresponds
to h � −9#] if an IM is primary\ then the ratio lp

loc :l
e
loc is in_nitesimal\ and conversely\ if the ratio

is in_nitesimal\ the corresponding du"x# is a primary IM[ Along with it\ e[g[ lp "unlike lp
loc # may

be much greater then le − le
loc "where lp and le are the total lengths of 5p and 5e respectively#[

Let us show it explicitly for a three!interval piecewise!linear displacement _eld "Fig[ 0#]

du"x# �

F

G

G

j

J

G

G

f

u0

D
x\ 9 ¾ x ¾ D

u0¦
u1−u0

lp−D
"x−D#\ D ¾ x ¾ lp

u1−
u1

l−lp
"x−lp #\ lp ¾ x ¾ l

\ "24#

u1 × u0 \ 5p � ð9\ lp Ł\ 5e � ðlp \ lŁ [ "25#

Then

lp
loc "D# � D

u1
1

u1
0¦

D
lp−D

"u1−u0 #1

� D
u1

1

u1
0

¦O"D1 #
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lp � const\ lim
D:9

lp
loc "D# � 9

le
loc "D# � le � l−lp � const\ "26#

and for any u0 ³ u1 and lp ³ l there does exist a su.ciently small value of D for which the ratio
lp
loc "D#:le

loc is also su.ciently small[

4[1[ A kind of conventional localization

Firstly\ we state the Modi_ed Van Hove|s theorem\ one of the three modi_cations of Van Hove|s
theorem proved by Ryzhak "0882a\ 0883#\ in order to use it in this and the following examples[

4[1[0[ Modi_ed Van Hove|s theorem
Let the region V be a rectangular parallelepiped with the normals to its faces forming the

orthonormal triplet "e0\ e1\ e2#\ let C9 � const be a strongly!elliptic fourth!order tensor "i[e[ its
Hadamard number c9 × 9#\ and let u"x# be a non!zero continuous piecewise!smooth vector _eld[

If]

"0# the tensor C9 is specularly symmetric with respect to the plane with normal e0 and the _eld
u"x# is tangential on the corresponding pair of faces "i[e[ u = e0 � 9 there# and vanishes on all the
others\ then the following inequality is valid]

R9 "u# 0 gV
9 & u]C9 ]9 & u dV − c9gV

9 & u]9 & u dV × 9^ "27#

"1# the tensor C9 is orthotropic with the planes of orthotropy parallel to the faces and the _eld
u"x# is tangential on all the faces "i[e[ u = ei � 9 on the faces with normals 2ei#\ then inequality
"27# is also valid[

Secondly\ we note that if a second!order tensor S9 is specularly symmetric with respect to the
plane with normal ei\ then ei = S9 is parallel to ei[ Hence\

gV
9 & u]S9 dV � g1V

n & u]S9 dS � g1V
n = S9 = u dS � 9 "28#

under the hypotheses of both parts of the Modi_ed Van Hove|s theorem\ provided that S9 is
supposed to possess the same type of symmetry as C9[ Equality "28# conicides with eqn "02#[

Thus\ all the results of Section 3 remain valid for a homogeneous elastic!plastic body not only
under zero displacement boundary conditions\ but also under boundary conditions of sliding on
a pair of parallelepiped|s faces or on all its faces\ provided that corresponding material symmetry
takes place[

Now we pass to the second example itself[ Let the elastic!plastic body be characterized by the
moduli tensors

Ce � 1G"0def−0
2
I & I#¦KI & I

Cp "h# � 1G"0def−0
2
I & I−S & S#¦KI & I¦1hS & S\ "39#
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where I is the second!order unit tensor\ 0def is the fourth!order tensor that maps any second!order
tensor H into its symmetric part]

0def ]H � 0
1
"H¦HT #\ "30#

and S is symmetric normalized second!order deviator]

S � ST \ S]S � 0\ S]I � 9[ "31#

It is clear from eqn "39#\ that the body is Hookian "with shear modulus G and bulk modulus K#
under elastic unloading\ and its plastic response is of von Mises type "with plastic shear modulus
h#[ The body is supposed to occupy the region 5 of the shape of rectangular parallelepiped

9 ¾ x = ei ¾ li \ ei = ej � dij \ i\ j � 0\ 1\ 2 "32#

with zero displacement boundary conditions "clamping# on the faces with normals 2e1\ 2e2 "the
second and the third pairs of faces# and sliding boundary conditions on the faces with normals
2e0 "the _rst pair of faces#[ The tensor S is speci_ed by the equality

S �
0

z1
"e1 & e2¦e2 & e1 # [ "33#

In that case the tensor Ce is isotropic and the Cp and S tensors are specularly symmetric with
respect to the plane of the _rst pair of faces[ Thus\ the assumptions of the Modi_ed Van Hove|s
theorem "part 0# are ful_lled together with eqn "28#\ and hence all the preceeding theory "Section
3# is valid for the body under consideration[

It is not di.cult to show that

cp "h# × 9\ h × 9^ cp "9# � 9\ C� � 1G"0def−0
2
I & I−S & S#¦KI & I "34#

e2 & e1 ]C�]e2 & e1 � e1 & e2 ]C�]e1 & e2 � 9^ e1 & e2 ]Cp "h#]e1 & e2 ³ 9\ h ³ 9[

We set the incremental displacement _eld satisfying the boundary conditions "Fig[ 1#\ by the
equality

du"x# �

F

G

j

J

G

f

dge1 0sin p
x1

l1 1x2 \ 9 ¾ x2 ¾ D

dge1 0sin p
x1

l1 1
D

l2−D
"l2−x2 #\ D ¾ x2 ¾ l2

[ "35#

Then\ given a negative h "with extremely small absolute value#\ we are always able to choose a
su.ciently small value of D\ so that the _eld du"x# be a corresponding IM "a kind of conventional
primary localized IM#[

It is clear that the 5p subregion corresponds to the interval 9 ¾ x2 ¾ D\ and the 5e corresponds
to that of D ¾ x2 ¾ l2[ For the localizational volumes calculations yield]
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Fig[ 1[ A kind of conventional localization pattern] the shear band[

Vp
loc 0

0g5p

dH]S dV1
1

g5p

"dH]S#1 dV
�

1
p

l0 l1D �
1
p

Vp \

V e
loc �

1
p

l0 l1 "l2−D# �
1
p

Ve \

Vloc �
7
p

D
l2

l2−D
l2

V\

D � ¦9c 6
Vloc :V � ¦9

Vp
loc :V

e
loc � ¦9

[ "36#

From eqn "36# it is clear that conventional primary localized IM eqn "35# is in fact characterized
by in_nitesimal values of the ratios Vloc:V and Vp

loc :V
e
loc [

4[2[ {Uniaxial| plasticity and quasi!one!dimensional "quasi!conventional# localization

Let us introduce some {unusual| incremental elastic!plastic constitutive relation]

Ce � 1G0def \ Cp "h# � 1G"0def−S & S#¦1hS & S\ S � e2 & e2 [ "37#

The only reason for calling it {unusual| is the choice of S "the normal to yield surface in the
strain space#^ in all other aspects it is quite a conventional elastoplasticity[
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The region 5 is again a rectangular parallelepiped\ eqn "32#\ but under di}erent boundary
conditions] sliding is supposed on all the faces[

All the suppositions correspond to the second part of the Modi_ed Van Hove|s theorem and

cp "h# � e2 & e2 ]Cp "h#]e2 & e2 � 1h8
×9\ h × 9

�9\ h � 9

³9\ h ³ 9\

C� � Cp "9# � 1G"0def−S & S# [ "38#

Thus\ the body is stable as long as h − 9 and the onset of instability is related to the value h � −9[
Let us analyse the inequality for IMs\ taking the account of simple special structure of the

constitutive relation "37#[ Representing du"x# and its gradient as

du"x# � e0du0 "x#¦e1du1 "x#¦e2du2 "x# 0 du_"x#¦e2du2 "x#\ "49#

9 & du � e0 &
1"du#
1x0

¦e1 &
1"du#
1x1

¦e2 &
1"du#
1x2

� 9_ & du¦e2 &
1"du#
1x2

� 9_ & du_¦ 0e2 &
1"du_#
1x2

¦9_"du2 # & e21¦e2 & e2

1"du2 #
1x2

"40#

we get]

9 & du]0def ]9 & du � 9_ & du_]0def ]9_ & du_

¦ 0e2 &
1"du_#
1x2

¦9_"du2 # & e21]0def ] 0e2 &
1"du_#
1x2

¦9_"du2 # & e21¦ 0
1"du2 #
1x2 1

1

\

9 & du]S �
1"du2 #
1x2

\

9 × R"du# � 1Gg5

9_ & du_]0def ]9_ & du_ dV

¦1Gg5 0e2 &
1"du_#
1x2

¦9_"du2 # & e21]0def ] 0e2 &
1"du_#
1x2

¦9_"du2 # & e21 dV

¦1G g5e 0
1du2

1x2 1
1

dV¦1h g5p 0
1du2

1x2 1
1

dV

−Gg5

9_ & du_]9_ & du_ dV¦1G g5e 0
1du2

1x2 1
1

dV¦1h g5p 0
1du2

1x2 1
1

dV

c
0
1 g5

9_ & du_]9_ & du_ dV¦g5e 0
1du2

1x2 1
1

dV ³ −
h
G g5p 0

1du2

1x2 1
1

dV\ h � −9\
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c

F

G

G

G

G

j

J

G

G

G

G

f

g5

9_ & du_]9_ & du_ dV

g5 0
1du2

1x2 1
1

dV

³
=h =
G

� ¦9

g5e 0
1du2

1x2 1
1

dV

g5p 0
1du2

1x2 1
1

dV

³
=h =
G

� ¦9

[ "41#

Firstly\ we note that du_ vanishes on side edges "parallel to e2# of the parallelepiped\ and relative
smallness of its gradient in the plane perpendicular to e2\ results in its relative smallness as compared
to du2[ Secondly\ noting that

g
l2

9

1du2

1x2

dx2 � 9 � gle2 "x_#

1du2

1x2

dx2¦glp2 "x_#

1du2

1x2

dx2 \ [x_\

and using the BunyakovskiiÐSchwarz inequality for le
2 "x_#]

gle2 "x_# 0
1du2

1x2 1
1

dx2 −
0

3l2 0g
l2

9 b
1du2

1x2 b dx21
1

\

we get]

0
3l2

g
l0

9 g
l1

9

dx0 dx1 0g
l2

9 b
1du2

1x2 b dx21
1

g
l0

9 g
l1

9

dx0 dx1 g
l2

9 0
1du2

1x2 1
1

dx2

� ¦9[

Denoting by a"x_# � a"x0\ x1# the ratio

a"x_# 0
g

l2

9 0
1du2

1x2 1
1

dx2

g
l0

9 g
l1

9

dx0 dx1 g
l2

9 0
1du2

1x2 1
1

dx2

\ g
l0

9 g
l1

9

a"x_# dx0 dx1 � 0\

we obtain ultimately]

0
3l2 g

l0

9 g
l1

9

a"x_# l2loc "x_# dx0 dx1 �
ðl2locŁ"a#

3l2
� ¦9\ l2loc "x_# 0

0g
l2

9 b
1du2

1x2 b dx21
1

g
l2

9 0
1du2

1x2 1
1

dx2

[ "42#
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Here l2loc "x_# is the {localizational length|\ that characterizes localization in the e2 direction\ and
ðl2locŁ"a# is a result of its averaging "with the weight a"x_## over the rectangle 9 ¾ x0 ¾ l0\ 9 ¾ x1 ¾ l1[

Thus\ from eqns "41#\ "42# it is clear that all the primary IMs in the case considered are
characterized by quasi!one!dimensional localization "in the e2 direction#[ It is not a conventional
localization within a thin layer\ but nevertheless\ some kind of localized strati_cation can be
observed here[

4[3[ Purely volumetric plasticity and a possibility in principle of completely non!conventional local!
ization

This example serves as an illustration of the fact that the mode of localization can be completely
di}erent from localization in a layer or from any kind of strati_cation similar to that of the
previous example[ For some hypothetical volumetric plasticity "unusual\ but of quite a con!
ventional structure# a localized IM is found "a possible one\ but not the only possible# with a small
sphere as a localization zone[ Since a sphere has no other geometrical parameters but radius\ which
is equivalent to volume\ we come to the conclusion that at least for this very type of plasticity the
in_nitesimal localizational volume is the only feature characterizing the whole class of primary
IMs[

We specify incremental elastic!plastic constitutive relation by the equalities]

Ce � 1G"0def−0
2
I & I#¦KI & I\ G × 9\ K × 9\

Cp "h# � 1G"0def−0
2
I & I#¦hI & I\ S �

0

z2
I[ "43#

For both branches it has the form of Hooke|s law with di}erent bulk moduli[
It is not di.cult to show that

cp "h# � min"G\ h¦3
2
G#\

cp "h�# � 9c h� � −3
2
G\ C� � C"h�# � 1G"0def−I & I# [ "44#

The constitutive relation "43# is isotropic\ and hence\ it may equally be assumed\ that a body
has arbitrary shape with zero displacement boundary conditions\ or that it has a special shape and
boundary conditions corresponding to any part of the Modi_ed Van Hove|s theorem[ We choose
the suppositions corresponding to the second part of the theorem] parallelepiped as a region and
sliding all over the surface[

Representation "13# takes the form]

R"du# � 1Gg5

9 & du]"0def−I & I#]9 & du dV

¦ 0K¦
3
2
G1 g5e

"9 = du#1 dV¦ 0h¦
3
2
G1 g5p

"9 = du#1 dV ³ 9[

Using the well!known Kelvin formula\ the _rst integral can be converted into
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Gg5

=9×du =1 dV

and we get]

Gg5

=9×du =1 dV¦ 0K¦
3
2

G1 g5e

"9 = du#1 dV ³ 0"−h#−
3
2
G1 g5p

"9 = du#1 dV\

"−h#−
3
2

G � ¦9 "45#

\

g5

=9×du =1 dV

g5p

"9 = du#1 dV
� ¦9\

g5e

"9 = du#1 dV

g5p

"9 = du#1 dV
� ¦9[ "46#

Trying potential _elds du"x#\ for which 9×du 0 9\ we need only to ful_ll the second relation "46#[
Let us make use of some potential _elds known from electrostatics^ precisely\ we take as du"x# the
electric _eld of a pair of homogeneous distributions of charge\ the _rst being a sphere of small
radius and the second being a concentric spherical layer of relatively large external radius "Fig[ 2#\
whose total charge is opposite to that of a sphere[ The _eld vanishes outside the layer and the

Fig[ 2[ A kind of completely non!conventional localization pattern] the spherical zone of localized expansion[
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boundary conditions are ful_lled provided that the layer lies within the body[ Divergence of the
_eld is proportional to the density of charge[ If D is internal radius\ r is external one\ and q × 9 is
a total charge of a sphere of radius D\ then]

9 = du � 3pq:3
2
pD2 × 9\ =x−x9 = ¾ D\

9 = du � −3pq:3
2
p"r2−D2 # ¾ 9\ D ³ =x−x9 = ¾ r\

Vp
loc � Vp � 3

2
pD2 \ Ve

loc � 3
2
p"r2−D2 # "47#

Vp
loc

Ve
loc

�
g5e

"9 = du#1 dV

g5p

"9 = du#1 dV
�

D2

r2−D2
� ¦9\

D
r

� ¦9[ "48#

Some di}erent IMs of the same type\ but with localization within a thin cylinder can be obtained
using the _elds of homogeneously charged concentric cylinders\ provided that their common axis
is normal to some pair of faces[ This cylindrical type of localization is possible not only for a
{volumetric| plasticity\ eqn "43#\ but also for a family of elastic!plastic relations with {cylindrical|
plasticity]

Ce � 1G0def \ Cp � 1G"0def−S & S#¦1hS & S\

S �
cos a

z1
"I−ei & ei #¦sin aei & ei \ 9 ¾ a ³ arcsin 0

0

z21[ "59#

5[ Concluding remarks

It is proved that localization of incremental deformation "understood in some generalized sense#
is an attribute of primary instability in homogeneous elastic!plastic bodies with constrained
boundary[ The analysis is free from any usual a priori suppositions regarding the IMs "e[g[ from
that of shear banding#[ As mentioned in Section 0\ indispensability of localization is a global non!
linear e}ect\ the one being absent in incrementally linear solids even under suitable boundary
conditions "i[e[ di}use IMs are possible there as well as localized ones#[

Homogeneity of a body in couple with rigid boundary constraint are the typical conditions for
localization to be possible in principle "i[e[ for stability to be preserved up to violation of Had!
amard|s inequality#[ However\ there exist some di}erent conditions\ that admit localization] e[g[
the body may be non!homogeneous "Nikitin and Ryzhak\ 0875# or the boundary constraint may
be not absolutely rigid "Ryzhak\ 0882\ 0882a\ b\ 0883#[ Although the analysis for those cases
"except for some of the examples in Section 4# is not presented in the paper\ we state that it leads
to mainly the same result\ by means of the modi_ed method of Ryzhak "0882#[

It is clear\ that found here\ the smallness of localizational volume does not exhaust all the
properties of the primary IMs in some speci_c cases\ since we take into account only non!
negativeness of the _rst integral in eqn "13#\ which is in fact in_nitesimal example 4[2 in Section 4
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illustrates such a conclusion[ Nevertheless\ example 4[3 in Section 4 "with purely volumetric
plasticity# shows\ that a spherical zone of localization is possible in principle\ and hence\ for that
case the smallness of localizational volume is the only geometrical property characterizing the
whole class of primary IMs] a sphere has no other parameters but volume[ Thus\ in the most
general setting of the problem of localized primary instability\ the smallness of localizational
volume is maximal geometrical characterization of that type of instability[

Acknowledgements

The author is grateful to Prof[ H[ Petryk for valuable discussion and comments[ This work was
supported by the Russian Foundation for Basic Research under grants 85!94!53236\ 85!94!54773[

Appendix A0] Properties of the function c"a#

In examining the properties of c"q\ a# as a function of a\ we omit the argument q]

C"a# 0 Ce−aS & S\ "A0[0#

c"a# 0 min
=f =� =g =�0

f & g]C"a#]f & g � f9 "a# & g9 "a#]C"a#]f9 "a# & g9 "a# "A0[1#

"continuity\ closedness and boundednesscminimum is attained#[ By assumption\

ce � c"9# × 9[ "A0[2#

The second!order tensor S in non!zero\ hence\ there exists a pair of unit vectors f0\ g0 such\ that

f0 & g0 ]S � 9\ "A0[3#

c"a# ¾ f0 & g0 ]Ce ]f0 & g0−a"f0 & g0 ]S#1
c c"a# : −� for a : ¦�\ "A0[4#

i[e[ c"a# varies from ce × 9 to −�[ Let b be positive[ Then

c"a¦b# ¾ f9 "a# & g9 "a#]C"a¦b#]f9 "a# & g9 "a# � c"a#−b"f9 "a# & g9 "a#]S#1 ¾ c"a#\

"A0[5#

which proves that c"a# is non!increasing in a[ Moreover\ if c"a# ³ ce � c"9#\ then we have]

ce × c"a# � f9 "a# & g9 "a#]Ce ]f9 "a# & g9 "a#−a"f9 "a# & g9 "a#]S#1

− ce−a"f9 "a# & g9 "a#]S#1

c a"f9 "a# & g9 "a#]S#1 × 9

c a × 9 and "f9 "a# & g9 "a#]S#1 × 9[ "A0[6#

Hence\ if c"a# ³ ce\ then by eqns "A0[5# and "A0[6# for b × 9 we obtain the strict inequality]
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c"a¦b# ³ c"a# "A0[7#

i[e[ for such values of a the function c"a# is monotonically decreasing[
To prove continuity we note that for b ×9

c"a¦b# � min
=f =� =g =�0

f & g"C"a#−bS & S#]f & g

− min
=f =� =g =�0

f & g]C"a#]f & g−b max
=f =� =g =�0

"f & g]S#1 − c"a#−bS]S\ "A0[8#

which\ together with eqn "A0[5# means continuity] =c"a0#−c"a1# = ¾ =a0−a1 =S]S[
Thus\ all the properties mentioned and used in Section 3\ are proved together with relations

"08#Ð"10#\ that result from them[

Appendix A1] Properties of the functional Vloc"8#
Here we establish some properties of the functional Vloc"8# which enable us to consider it as a

measure of localization inherent to some scalar _eld 8"x# "in the paper the meaning of this _eld is
some characteristic incremental strain 8 � dH ] S � 0

1
"dH¦dHT#]S#[

Because of supposed piecewise smoothness of the incremental displacements du"x#\ it is natural
to consider 8"x# as a piecewise!continuous scalar _eld with the set of positiveness 5p\ the latter
being a unity of a number of bounded regions]

8"x# × 9\ x $ 5p "A1[0#

The BunyakovskiiÐSchwarz inequality for 5 gives]

0g5

=8 = dV1
1

¾ Vg5

81 dV\ "A1[1#

from which we obtain immediately]

Vloc "8# 0
0g5

=8 = dV1
1

g5

81 dV
�

ð=8 =Ł1

ð81Ł
V ¾ V\

Vloc "8#
V

�
ð=8 =Ł1

ð81Ł
¾0\ "A1[2#

the equality holding if and only if =8"x# = is constant over 5[ Note that Vloc"8# is invariant with
respect to multiplying 8"x# by any non!zero constant[

Let us consider _rst\ two types of transformation of a _eld 8"x#\ that we call its {localization|
and {homogenization|[

A1[0[ Localization

We isolate some subset 59 in 5\ with the volume V9 ³ V\ and transform 8"x# into 8a"x# as
follows]
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8a "x# 0 6
8"x#¦a\ x $ 59

8"x#\ x $ 5:59

\ "A1[3#

where a is a parameter[
It is almost evident that

lim
a:�

Vloc "8a# � V9 [ "A1[4#

A1[1[ Homo`enization

In this case we transform 8"x# into

8½ a "x# 0 8"x#¦a[

Then Vloc"8½ a# is varied from Vloc"8# to V\ as a is varied from zero to in_nity[ This result is quite
natural\ since the greater the absolute value of a\ the less is a relative di}erence of 8½ a"x# from the
uniform distribution[

Now let us establish some more general property of Vloc"8# \ expressed by the following lemma[

A1[2[ Lemma
Suppose that

sup
x$5

=8"x# =

ð=8 =Ł
� m − 0[ "A1[5#

Then the localizational volume obeys the inequality

0 ¾
V

Vloc "8#
¾ m\

0
m

V ¾ Vloc "8# ¾ V[ "A1[6#

Before passing on to the proof\ we note that the inequality "A1[6# means _rstly\ that if variation
of =8"x# = with respect to its mean value is not great\ then the localizational volume di}ers not
greatly from V^ secondly\ if localizational volume is rather small relative to V\ then =8"x# = for
certain attains rather great relative values "V:Vloc"8# ¾ =8"x# =:ð=8 =Ł ¾m# on a set of 59 of non!
zero volume V9 not exceeding Vloc"8# [

A1[2[0[ Proof
Consider the following inequality]

g5

81 dV � g5

=8>8 = dV ¾ sup
x$5

=8 =g5

=8 = dV "A1[7#

that is equivalent to
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ð81Ł ¾ sup
x$5

=8 =ð=8 =Ł �
sup
x$5

=8 =

ð=8 =Ł
ð=8 =Ł1 [ "A1[8#

Ultimately we have

V
Vloc "8#

�
ð81Ł

ð=8 =Ł1
¾

sup
x$5

=8 =

ð=8 =Ł
� m[ "A1[09#

Note\ that equality in eqn "A1[7#\ and hence\ in eqn "A1[09#\ takes place if and only if =8"x# =
takes only two values\ speci_cally those of zero and

sup
x$5

=8 = \

the latter being taken on a subset 59 of non!zero volume V9[ In this case Vloc"8# � V9[ Otherwise\
i[e[ if =8"x# = takes some values di}erent from zero and

sup
x$5

=8 = \

then the inequality "A1[09# is strict and due to piecewise continuity of 8"x# there is a subset 59 of
non!zero volume V9 where the inequality

V
Vloc "8#

¾
=8"x# =
ð=8 =Ł

¾ m "A1[00#

is valid[ Let us prove that V9 ¾ Vloc"8# [ Integrating the _rst inequality in "A1[00# over 59\ we _nd]

V
Vloc "8#

V9 ¾
0

ð=8 =Ł g59

=8 = dV ¾
0

ð=8 =Łg5

=8 = dV � VcV9 ¾ Vloc "8# "A1[01#

Thus\ the totality of declared properties of the quantity of localizational volume has been proved
and it really evaluates the volume of that part of a region\ where the scalar _eld takes relatively
great absolute values[
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